Rata-rata Tertimbang Berperan: Dasar-dasar Selama bertahun-tahun, teknisi telah menemukan dua masalah dengan rata-rata bergerak sederhana. Masalah pertama terletak pada kerangka waktu moving average (MA). Sebagian besar analis teknikal percaya bahwa aksi harga. Harga saham pembukaan atau penutupan, tidak cukup untuk mengandalkan prediksi apakah membeli atau menjual sinyal dari tindakan crossover MA. Untuk mengatasi masalah ini, analis sekarang menetapkan bobot lebih banyak pada data harga terbaru dengan menggunakan rata-rata pergerakan rata-rata yang dipercepat secara eksponensial (EMA). (Pelajari lebih lanjut dalam Menjelajahi Nilai Pindah Yang Dipengaruhi Secara Eksponensial) Contoh Misalnya, menggunakan MA 10 hari, seorang analis akan mengambil harga penutupan pada hari ke 10 dan memperbanyak angka ini dengan angka 10, hari kesembilan dengan pukul sembilan, kedelapan Hari ke delapan dan seterusnya ke MA yang pertama. Setelah total telah ditentukan, analis kemudian akan membagi jumlahnya dengan penambahan pengganda. Jika Anda menambahkan pengganda contoh MA 10 hari, jumlahnya adalah 55. Indikator ini dikenal sebagai rata-rata bergerak tertimbang linear. (Untuk bacaan terkait, lihat Simple Moving Averages Making Trends Stand Out.) Banyak teknisi percaya diri dengan rata-rata moving average yang dipercepat secara eksponensial (EMA). Indikator ini telah dijelaskan dengan berbagai cara sehingga membingungkan para siswa dan investor. Mungkin penjelasan terbaiknya berasal dari John J. Murphys Technical Analysis Of The Financial Markets, (diterbitkan oleh New York Institute of Finance, 1999): Rata-rata moving average yang dipercepat secara eksponensial membahas kedua masalah yang terkait dengan moving average sederhana. Pertama, rata-rata merapikan secara eksponensial memberi bobot lebih besar pada data yang lebih baru. Oleh karena itu, ini adalah rata-rata bergerak tertimbang. Tapi sementara itu memberi informasi yang kurang penting untuk data harga terakhir, itu termasuk dalam perhitungan semua data dalam kehidupan instrumen. Selain itu, pengguna dapat menyesuaikan bobot untuk memberi bobot lebih besar atau lebih kecil ke harga hari terakhir, yang ditambahkan ke persentase nilai hari sebelumnya. Jumlah dari kedua nilai persentase tersebut menambahkan hingga 100. Misalnya, harga hari terakhir dapat diberi bobot 10 (0,10), yang ditambahkan ke hari sebelumnya dengan berat 90 (0,90). Ini memberi hari terakhir 10 dari total bobot. Ini setara dengan rata-rata 20 hari, dengan memberikan harga hari terakhir dengan nilai lebih kecil dari 5 (0,05). Gambar 1: Rata-rata Moving Exponentially Moving Bagan di atas menunjukkan Indeks Komposit Nasdaq dari minggu pertama di bulan Agustus 2000 sampai 1 Juni 2001. Seperti yang dapat Anda lihat dengan jelas, EMA, yang dalam kasus ini menggunakan data harga penutupan selama suatu Periode sembilan hari, memiliki sinyal jual yang pasti pada 8 September (ditandai dengan panah bawah hitam). Ini adalah hari dimana indeks menembus di bawah level 4.000. Panah hitam kedua menunjukkan kaki lain yang benar-benar diharapkan teknisi. Nasdaq tidak bisa menghasilkan volume dan minat yang cukup dari para investor ritel untuk menembus angka 3.000. Kemudian turun lagi ke bawah pada 1619.58 pada 4 April. Uptrend 12 Apr ditandai dengan panah. Di sini indeks ditutup pada 1.961,46, dan teknisi mulai melihat fund manager institusional mulai mengambil beberapa penawaran seperti Cisco, Microsoft dan beberapa isu terkait energi. (Baca artikel terkait kami: Moving Average Envelopes: Refining Alat Perdagangan Populer dan Moving Average Bounce.) Nilai total pasar dolar dari semua saham perusahaan yang beredar. Kapitalisasi pasar dihitung dengan cara mengalikan. Frexit singkatan dari quotFrench exitquot adalah spinoff Prancis dari istilah Brexit, yang muncul saat Inggris memilih. Perintah ditempatkan dengan broker yang menggabungkan fitur stop order dengan perintah limit. Perintah stop-limit akan. Ronde pembiayaan dimana investor membeli saham dari perusahaan dengan valuasi lebih rendah daripada valuasi yang ditempatkan pada. Teori ekonomi tentang pengeluaran total dalam perekonomian dan pengaruhnya terhadap output dan inflasi. Ekonomi Keynesian dikembangkan. Kepemilikan aset dalam portofolio. Investasi portofolio dilakukan dengan harapan menghasilkan laba di atasnya. Ini. Home gtgt Topik Akuntansi Inventaris Metode Inventori Bergerak Rata-rata Metode Inventori Bergerak Rata-rata Ikhtisar Di bawah metode persediaan rata-rata bergerak, biaya rata-rata setiap item persediaan dalam stok dihitung ulang setelah setiap pembelian persediaan. Metode ini cenderung menghasilkan valuasi persediaan dan hasil penjualan barang yang ada di antaranya yang berasal dari metode first in, first out (FIFO) dan metode in the first out (LIFO) terakhir. Pendekatan rata-rata ini dianggap menghasilkan pendekatan yang aman dan konservatif untuk melaporkan hasil keuangan. Perhitungannya adalah total biaya barang yang dibeli dibagi dengan jumlah barang yang ada. Biaya persediaan akhir dan harga pokok penjualan ditetapkan pada biaya rata-rata ini. Tidak perlu biaya layering, seperti yang diperlukan untuk metode FIFO dan LIFO. Karena perubahan biaya rata-rata bergerak setiap kali ada pembelian baru, metode ini hanya dapat digunakan dengan sistem pelacakan persediaan perpetual sehingga sistem ini menyimpan catatan persediaan persediaan yang up to date. Anda tidak dapat menggunakan metode persediaan rata-rata bergerak jika Anda hanya menggunakan sistem persediaan periodik. Karena sistem seperti itu hanya mengumpulkan informasi pada akhir setiap periode akuntansi, dan tidak menyimpan catatan pada tingkat unit individual. Juga, ketika penilaian persediaan diturunkan menggunakan sistem komputer, komputer membuatnya relatif mudah untuk terus menyesuaikan penilaian persediaan dengan metode ini. Sebaliknya, sulit untuk menggunakan metode rata-rata bergerak saat catatan inventaris dikelola secara manual, karena staf klerus akan kewalahan dengan jumlah perhitungan yang dibutuhkan. Moving Average Inventory Method Contoh Contoh 1. ABC International memiliki 1.000 widget hijau yang tersedia mulai awal April, dengan biaya per unit 5. Dengan demikian, saldo awal persediaan widget hijau pada bulan April adalah 5.000. ABC kemudian membeli 250 widget greeen tambahan pada tanggal 10 April untuk masing-masing 6 (total pembelian 1.500), dan 750 widget hijau lainnya pada tanggal 20 April untuk masing-masing 7 (jumlah pembelian 5.250). Dengan tidak adanya penjualan, ini berarti bahwa biaya rata-rata bergerak per unit pada akhir April adalah 5,88, yang dihitung sebagai biaya total 11.750 (5.000 saldo awal 1.500 pembelian 5.250 pembelian), dibagi dengan jumlah total on - Jumlah unit tangan 2.000 widget hijau (1.000 saldo awal 250 unit dibeli 750 unit yang dibeli). Dengan demikian, biaya rata-rata bergerak dari widget hijau adalah 5 per unit pada awal bulan, dan 5,88 pada akhir bulan. Kami akan mengulangi contohnya, tapi sekarang sertakan beberapa penjualan. Ingatlah bahwa kita menghitung ulang rata-rata bergerak setelah setiap transaksi. Contoh 2. ABC International memiliki 1.000 widget hijau yang tersedia mulai awal April, dengan biaya per unit 5. Perusahaan menjual 250 unit ini pada tanggal 5 April, dan mencatat biaya atas harga pokok penjualan 1.250, yang mana Dihitung sebagai 250 unit x 5 per unit. Ini berarti sekarang ada 750 unit yang tersisa di stok, dengan biaya per unit 5 dan total biaya 3.750. ABC kemudian membeli 250 widget hijau tambahan pada tanggal 10 April untuk 6 masing-masing (total pembelian 1.500). Biaya rata-rata bergerak sekarang 5,25, yang dihitung sebagai biaya total 5.250 dibagi dengan 1.000 unit yang masih ada. ABC kemudian menjual 200 unit pada 12 April, dan mencatat biaya atas barang yang terjual sebesar 1.050, yang dihitung sebagai 200 unit x 5,25 per unit. Ini berarti sekarang ada 800 unit yang tersisa di stok, dengan biaya per unit 5.25 dan total biaya 4.200. Akhirnya, ABC membeli widget hijau tambahan 750 pada tanggal 20 April untuk masing-masing 7 (total pembelian 5.250). Pada akhir bulan, biaya rata-rata bergerak per unit adalah 6,10, yang dihitung sebagai biaya total 4.200 5.250, dibagi dengan jumlah sisa unit 800 750. Dengan demikian, pada contoh kedua, ABC International memulai bulan dengan 5.000 Saldo awal widget hijau dengan biaya 5 masing-masing, menjual 250 unit dengan biaya 5 pada 5 April, merevisi biaya unit menjadi 5,25 setelah pembelian pada 10 April, menjual 200 unit dengan biaya 5,25 pada 12 April, dan Akhirnya merevisi biaya unit menjadi 6,10 setelah pembelian pada tanggal 20 April. Anda dapat melihat bahwa biaya per unit berubah setelah pembelian inventaris, namun tidak setelah penjualan inventaris. DAX mencakup beberapa fungsi agregasi statistik, seperti rata-rata, varians, dan Standar deviasi Perhitungan statistik khas lainnya mengharuskan Anda untuk menulis ekspresi DAX yang lebih panjang. Excel, dari sudut pandang ini, memiliki bahasa yang jauh lebih kaya. Pola Statistik adalah kumpulan kalkulasi statistik yang umum: median, mode, moving average, persentil, dan kuartil. Kami ingin mengucapkan terima kasih kepada Colin Banfield, Gerard Brueckl, dan Javier Guilln, yang blognya mengilhami beberapa pola berikut. Contoh Pola Dasar Rumus dalam pola ini adalah solusi untuk perhitungan statistik tertentu. Anda dapat menggunakan fungsi DAX standar untuk menghitung mean (rata-rata aritmatika) dari sekumpulan nilai. RATA-RATA. Mengembalikan rata-rata semua angka dalam kolom angka. AVERAGEA. Mengembalikan rata-rata semua angka dalam kolom, menangani nilai teks dan non-numerik (nilai teks non-numerik dan kosong dihitung sebagai 0). AVERAGEX. Hitung rata-rata ekspresi yang dievaluasi di atas meja. Moving Average Rata-rata bergerak adalah perhitungan untuk menganalisis titik data dengan membuat serangkaian rata-rata himpunan bagian yang berbeda dari kumpulan data lengkap. Anda bisa menggunakan banyak teknik DAX untuk menerapkan perhitungan ini. Teknik yang paling sederhana adalah dengan menggunakan AVERAGEX, iterasi tabel granularity yang diinginkan dan menghitung untuk setiap iterasi ekspresi yang menghasilkan titik data tunggal yang digunakan rata-rata. Sebagai contoh, rumus berikut menghitung rata-rata bergerak dalam 7 hari terakhir, dengan asumsi Anda menggunakan tabel Date dalam model data Anda. Dengan menggunakan AVERAGEX, Anda secara otomatis menghitung ukuran pada setiap tingkat granularitas. Bila menggunakan ukuran yang bisa digabungkan (seperti SUM), maka pendekatan lain berdasarkan CALCULATEmay menjadi lebih cepat. Anda dapat menemukan pendekatan alternatif ini dalam pola Moving Average yang lengkap. Anda dapat menggunakan fungsi DAX standar untuk menghitung varians dari sekumpulan nilai. VAR. S. Mengembalikan varians nilai dalam kolom yang mewakili populasi sampel. VAR. P. Mengembalikan varians nilai dalam kolom yang mewakili keseluruhan populasi. VARX. S. Mengembalikan varians ekspresi yang dievaluasi di atas tabel yang mewakili populasi sampel. VARX. P. Mengembalikan varians ekspresi yang dievaluasi di atas tabel yang mewakili keseluruhan populasi. Deviasi Standar Anda dapat menggunakan fungsi DAX standar untuk menghitung deviasi standar dari seperangkat nilai. STDEV. S. Mengembalikan standar deviasi nilai dalam kolom yang mewakili populasi sampel. STDEV. P. Mengembalikan standar deviasi nilai dalam kolom yang mewakili keseluruhan populasi. STDEVX. S. Mengembalikan standar deviasi ekspresi yang dievaluasi di atas tabel yang mewakili populasi sampel. STDEVX. P. Mengembalikan standar deviasi ekspresi yang dievaluasi di atas tabel yang mewakili seluruh populasi. Median adalah nilai numerik yang memisahkan separuh populasi yang lebih tinggi dari bagian bawah. Jika ada sejumlah ganjil, median adalah nilai tengah (sortir baris dari nilai terendah ke nilai tertinggi). Jika ada sejumlah baris, itu adalah rata-rata dari dua nilai tengahnya. Rumusnya mengabaikan nilai kosong, yang tidak dianggap sebagai bagian dari populasi. Hasilnya identik dengan fungsi MEDIAN di Excel. Gambar 1 menunjukkan perbandingan antara hasil yang dikembalikan oleh Excel dan formula DAX yang sesuai untuk perhitungan median. Gambar 1 Contoh kalkulasi median di Excel dan DAX. Modus adalah nilai yang paling sering muncul dalam kumpulan data. Rumusnya mengabaikan nilai kosong, yang tidak dianggap sebagai bagian dari populasi. Hasilnya identik dengan fungsi MODE dan MODE. SNGL di Excel, yang hanya mengembalikan nilai minimum bila ada beberapa mode dalam rangkaian nilai yang dipertimbangkan. Fungsi Excel MODE. MULT akan mengembalikan semua mode, namun Anda tidak dapat menerapkannya sebagai ukuran di DAX. Gambar 2 membandingkan hasil yang dikembalikan oleh Excel dengan rumus DAX yang sesuai untuk perhitungan mode. Gambar 2 Contoh perhitungan mode di Excel dan DAX. Persentil Persentil adalah nilai di bawah dimana persentase nilai tertentu dalam kelompok jatuh. Rumusnya mengabaikan nilai kosong, yang tidak dianggap sebagai bagian dari populasi. Perhitungan di DAX memerlukan beberapa langkah, yang dijelaskan di bagian Pola Lengkap, yang menunjukkan bagaimana mendapatkan hasil yang sama dari fungsi Excel PERCENTILE, PERCENTILE. INC, dan PERCENTILE. EXC. Kuartil adalah tiga poin yang membagi satu set nilai menjadi empat kelompok yang sama, masing-masing kelompok terdiri dari seperempat data. Anda dapat menghitung kuartil dengan menggunakan pola Persentil, berikut korespondensi ini: Kuartil pertama kuartil terbawah kuartil ke-2 Persentil kuartil kedua Persentil ke-50 Kuartil atas kuartil atas 75 th persentil Pola Lengkap Beberapa perhitungan statistik memiliki deskripsi yang lebih panjang tentang pola yang lengkap, karena Anda mungkin memiliki implementasi yang berbeda tergantung pada model data dan persyaratan lainnya. Moving Average Biasanya Anda mengevaluasi moving average dengan mereferensikan tingkat granularitas hari. Template umum dari formula berikut memiliki tanda ini: Jumlah hari ini adalah jumlah hari untuk rata-rata bergerak. Ltdatecolumngt adalah kolom tanggal dari tabel tanggal jika Anda memilikinya, atau kolom tanggal tabel yang berisi nilai jika tidak ada tabel tanggal yang terpisah. Ukuran adalah ukuran untuk dihitung sebagai moving average. Pola paling sederhana menggunakan fungsi AVERAGEX di DAX, yang secara otomatis mempertimbangkan hanya hari-hari dimana ada nilai. Sebagai alternatif, Anda dapat menggunakan template berikut dalam model data tanpa tabel tanggal dan dengan ukuran yang dapat digabungkan (seperti SUM) selama periode keseluruhan dipertimbangkan. Rumus sebelumnya mempertimbangkan satu hari tanpa data yang sesuai sebagai ukuran yang memiliki 0 nilai. Hal ini dapat terjadi hanya jika Anda memiliki tabel tanggal terpisah, yang mungkin berisi hari dimana tidak ada transaksi yang sesuai. Anda dapat memperbaiki rata-rata denominator dengan hanya menggunakan jumlah hari dimana ada transaksi dengan menggunakan pola berikut, di mana: ltfacttablegt adalah tabel yang terkait dengan tabel tanggal dan nilai yang dihitung yang dihitung dengan ukuran. Anda mungkin menggunakan fungsi DATESBETWEEN atau DATESINPERIOD alih-alih FILTER, namun hanya bekerja di tabel tanggal reguler, sedangkan Anda dapat menerapkan pola yang dijelaskan di atas juga ke tabel tanggal non-reguler dan model yang tidak memiliki tabel tanggal. Misalnya, perhatikan perbedaan hasil yang dihasilkan oleh dua langkah berikut ini. Pada Gambar 3, Anda dapat melihat bahwa tidak ada penjualan pada tanggal 11 September 2005. Namun, tanggal ini termasuk dalam tabel Tanggal sehingga, ada 7 hari (dari 11 September sampai 17 September) yang hanya memiliki 6 hari dengan data. Gambar 3 Contoh perhitungan Moving Average mempertimbangkan dan mengabaikan tanggal tanpa penjualan. Ukuran Moving Average 7 Days memiliki angka yang lebih rendah antara 11 September dan 17 September, karena mempertimbangkan 11 September sebagai hari dengan 0 penjualan. Jika Anda ingin mengabaikan hari tanpa penjualan, maka gunakanlah ukuran Moving Average 7 Days No Zero. Ini bisa menjadi pendekatan yang tepat saat Anda memiliki tabel tanggal yang lengkap namun Anda ingin mengabaikan hari tanpa transaksi. Dengan menggunakan rumus Moving Average 7 Days, hasilnya benar karena AVERAGEX secara otomatis hanya mempertimbangkan nilai yang tidak kosong. Ingatlah bahwa Anda dapat meningkatkan kinerja rata-rata bergerak dengan mempertahankan nilai dalam kolom tabel yang dihitung dengan granularitas yang diinginkan, seperti tanggal, tanggal, atau produk. Namun, pendekatan perhitungan dinamis dengan ukuran menawarkan kemampuan untuk menggunakan parameter untuk jumlah hari rata-rata bergerak (misalnya mengganti jumlah hari kerja dengan ukuran yang menerapkan pola Tabel Parameter). Median sesuai dengan persentil ke-50, yang dapat Anda hitung dengan menggunakan pola Persentil. Namun, pola Median memungkinkan Anda mengoptimalkan dan menyederhanakan perhitungan median dengan menggunakan ukuran tunggal, bukan beberapa langkah yang diperlukan oleh pola Persentil. Anda dapat menggunakan pendekatan ini saat menghitung median untuk nilai yang termasuk dalam ltvaluecolumngt, seperti yang ditunjukkan di bawah ini: Untuk meningkatkan kinerja, Anda mungkin ingin mempertahankan nilai suatu ukuran dalam kolom yang dihitung, jika Anda ingin mendapatkan median untuk hasil Sebuah ukuran dalam model data. Namun, sebelum melakukan pengoptimalan ini, Anda harus menerapkan perhitungan MedianX berdasarkan template berikut, dengan menggunakan spidol ini: ltgranularitytablegt adalah tabel yang menentukan granularity perhitungan. Misalnya, tabel tanggal bisa dihitung jika Anda ingin menghitung median ukuran yang dihitung pada tingkat hari, atau mungkin NILAI (8216DateYearMonth) jika Anda ingin menghitung median ukuran yang dihitung pada tingkat bulan. Ukuran adalah ukuran untuk menghitung setiap baris perhitungan ltgranularitas untuk perhitungan median. Ltmeasuretablegt adalah tabel yang berisi data yang digunakan oleh ltmeasuregt. Misalnya, jika ukuran ltgranularityt adalah dimensi seperti 8216Date8217, maka nilai yang diinginkan adalah 8216Internet Sales8217 yang berisi kolom Jumlah Penjualan Internet yang dijumlahkan dengan ukuran Total Penjualan Internet. Misalnya, Anda dapat menulis median Total Penjualan Internet untuk semua Pelanggan di Adventure Works sebagai berikut: Tip Pola berikut: digunakan untuk menghapus baris dari ltgranularitytablegt yang tidak memiliki data yang sesuai dalam pilihan saat ini. Ini adalah cara yang lebih cepat daripada menggunakan ungkapan berikut: Namun, Anda mungkin mengganti keseluruhan ekspresi KABELULATET dengan hanya ltgranularitytablegt jika Anda ingin mempertimbangkan nilai kosong dari kemampuan tersebut sebagai 0. Kinerja formula MedianX bergantung pada jumlah baris di Meja iterasi dan pada kompleksitas ukuran. Jika kinerjanya buruk, Anda mungkin akan bertahan dalam hasil pengukuran di kolom perhitungan lttablegt, namun ini akan menghilangkan kemampuan menerapkan filter ke perhitungan median pada waktu kueri. Percentile Excel memiliki dua implementasi perhitungan persentil yang berbeda dengan tiga fungsi: PERCENTILE, PERCENTILE. INC, dan PERCENTILE. EXC. Mereka semua mengembalikan persentil K-th dari nilai, di mana K berada pada kisaran 0 sampai 1. Perbedaannya adalah PERCENTILE dan PERCENTILE. INC menganggap K sebagai rentang inklusif, sedangkan PERCENTILE. EXC menganggap kisaran K 0 sampai 1 sebagai eksklusif. . Semua fungsi dan implementasi DAX mereka menerima nilai persentil sebagai parameter, yang kita sebut nilai persentil K. ltKgt berada pada kisaran 0 sampai 1. Kedua implementasi DAX dari persentil memerlukan beberapa tindakan yang serupa, namun cukup berbeda untuk meminta Dua formula yang berbeda. Langkah-langkah yang didefinisikan dalam masing-masing pola adalah: KPerc. Nilai persentil itu sesuai dengan ltKgt. PercPos. Posisi persentil dalam kumpulan nilai yang disortir. ValueLow. Nilai di bawah posisi persentil. Nilai tinggi Nilai diatas posisi persentil. Persentil Perhitungan akhir persentil. Anda memerlukan ValueLow dan ValueHigh langkah dalam kasus PercPos berisi bagian desimal, karena Anda harus interpolasi antara ValueLow dan ValueHigh untuk mengembalikan nilai persentil yang benar. Gambar 4 menunjukkan contoh perhitungan yang dibuat dengan formula Excel dan DAX, menggunakan kedua algoritma persentil (inklusif dan eksklusif). Gambar 4 Persentase perhitungan menggunakan rumus Excel dan perhitungan DAX yang setara. Pada bagian berikut, rumus Persentil mengeksekusi perhitungan pada nilai yang tersimpan dalam kolom tabel, DataValue, sedangkan rumus PercentileX mengeksekusi perhitungan pada nilai yang dikembalikan dengan ukuran yang dihitung pada granularitas tertentu. Persentase Inklusi Implementasi Inklusif Persentase adalah sebagai berikut. Percentile Exclusive Penerapan Eksklusif Persentil adalah sebagai berikut. PercentileX Inclusive Implementasi Inklusif PercentileX didasarkan pada template berikut, dengan menggunakan penanda ini: ltgranularitytablegt adalah tabel yang mendefinisikan granularity perhitungan. Misalnya, ini adalah tabel Tanggal jika Anda ingin menghitung persentase dari ukuran di tingkat hari, atau bisa jadi VALUES (8216DateYearMonth) jika Anda ingin menghitung persentase dari ukuran di tingkat bulan. Ukuran adalah ukuran untuk menghitung setiap baris perhitungan ltgranularitas untuk perhitungan persentil. Ltmeasuretablegt adalah tabel yang berisi data yang digunakan oleh ltmeasuregt. Misalnya, jika ukuran ltgranularityt adalah dimensi seperti 8216Date, 8217 maka nilai yang diinginkan adalah 8216Sales8217 yang berisi kolom Jumlah yang dijumlahkan dengan jumlah Total Amount. Misalnya, Anda dapat menulis PercentileXInc Total Jumlah Penjualan untuk semua tanggal dalam tabel Tanggal sebagai berikut: PercentileX Eksklusif Penerapan Eksklusif PercentileX didasarkan pada template berikut, dengan menggunakan penanda yang sama yang digunakan dalam Inklusif PercentileX: Misalnya, Anda Dapat menulis PercentileXExc Total Jumlah Penjualan untuk semua tanggal dalam tabel Tanggal sebagai berikut: Beri tahu saya tentang pola yang akan datang (buletin). Hapus centang untuk mendownload file secara bebas. Diterbitkan pada 17 Maret 2014 oleh
No comments:
Post a Comment